

RESEARCH PROJECT
APPLICATION FORM

Performance Optimization System for Hadoop
and Spark Frameworks

Promoting academia-industry alliances for R&D through
collaborative and open innovation platform

Project reference number: 598719-EPP-1-2018-1-MK-EPPKA2-CBHE-JP

Project duration: 15 November 2018 – 14 November 2021
EU funding instrument: European Neighbourhood Instrument (Erasmus+: KA2 CBHE)
Erasmus+ (CBHE) grant amount: 531,165.00 €
Partner countries: Armenia, Bosnia and Herzegovina, North Macedonian, Austria, Germany, Finland
Target groups: University management and students, companies, research institutions, intermediaries.
Grant holder: Ss. Cyril and Methodius University in Skopje, North Macedonia
Coordinator: Prof. Elena Dumova-Jovanoska, Ss. Cyril and Methodius University in Skopje

This project has been funded with support from the European Commission. This document reflects the views only of the
author, and the Commission cannot be held responsible for any use which may be made of the information contained

therein.

This document is licensed under Creative Common

Attribution-NonCommercial-ShareAlike 4.0 International.

2

Research project application form information
PROJECT NAME Performance Optimization System for Hadoop and Spark

Frameworks

RESEARCH AREA Big Data

NARROW RESEARCH AREA Energy consumption and performance optimization

TYPE OF RESEARCH ☐ fundamental
 scientific
developing

☐ applicative
☐ educative
☐ cooperative

PROJECT LEADER Hrachya Astsatryan

LEAD ORGANIZATION Institute for Informatics and Automation Problems of the National
Academy of Sciences of the Republic Armenia

LEAD ORGANIZATION
ADDRESS

1, Paruyr Sevak str.,

R&D UNIT NPUA/IIAP Cooperative R&D Unit, Open-Source Software Lab

PROJECT DURATION from: 01/05/2021 to: 30/04/2022

PROJECT COST (€) 8000

DATE AND PLACE OF
APPLICATION FORM
SUBMISSION

20 April, 2021
Yerevan, Armenia

PROJECT LEADER R&D UNIT LEGAL
REPRESENTATIVE

3

Contents
Project summary ... 4
1. State of the art ... 5
2. Recent results from own research ... 6
3. Goals of the research project ... 11
4. Outcomes .. 13
5. Research plan and outcomes from each research stage .. 14
6. Beneficiaries of the outcomes, impact, dissemination and sustainability 18
7. Technical prerequisites for project realization .. 19
8. Participants in the project .. 20
9. Project budget and cost ... 23

4

Project summary

The optimization of large-scale data sets depends on the technologies and methods used. The MapReduce model,
implemented on Apache Hadoop or Spark, allows splitting large data sets into a set of blocks distributed on several
machines. Data compression reduces data size and transfer time between disks and memory but requires additional
processing. Therefore, finding an optimal tradeoff is a challenge, as a high compression factor may underload
Input/Output but overload the processor. The project aims to present a system enabling the selection of the
compression tools and tuning the compression factor to reach the best performance in Apache Hadoop and Spark
infrastructures based on simulation analyzes.

Keywords: Hadoop, Spark, data compression, CPU/IO tradeoff, performance optimization, energy
consumption.

5

1. State of the art

Big Data processing [1] is a resource-intensive operation that uses specific hardware and software. Due to the
intense Input/Output (I/O) nature of the processing, the hardware architecture is different from the traditional
high-performance computing (HPC) clusters or supercomputers, particularly, local disks are required for all data
nodes. Moreover, the data processing application stack is also significantly different from traditional approaches.
For instance, the data volume is substantially larger than in other operations, and the data sets are poorly
structured, and various data types are available.

The traditional relational database management systems, like SQL queries, are incapable of tackling semi-
structured or unstructured Big Data processing. Thus, the MapReduce model has been introduced, a critical
technology for processing and generating extensive data sets. Its implementations, such as Apache Hadoop [2] or
Spark [3], split large data sets into a set of distributed blocks, execute map tasks in parallel on these blocks, and
finally reduce tasks for the aggregation of results. Data compression techniques are used to overcome data storage
and network bandwidth limitations to process a massive volume of data. In Big Data infrastructures, it decreases
the size of data chunks to minimize the time delay forced by the I/O operation and save space on local disks.
Therefore, it is a challenge to find an optimal tradeoff, as high compression factor may underload I/O but overload
CPU, while a weak compression factor may underload CPU but overload I/O. The ideal configuration is when
both I/O and CPU are used entirely. CPU (respectively I/O) should not be waiting for I/O (respectively CPU) to
reach the best performance.

The project aims to present a system enabling the selection of the compression tools and tuning the
compression factor to reach the best performance in Hadoop and Spark infrastructures based on simulation
analysis.

6

2. Recent results from own research

Mainly, the Hadoop and Spark cluster consisting of a master and 16 slave nodes is used for the experiments with
five distinct configurations: 1+4, 1+8, and 1+16. Each node in the cluster runs the Openstack middleware with
one virtual machine per node using Ubuntu server 18.04 operating system, 3 GB of memory, and a 120 GB SATA
shared hard disk. The Hadoop version 3.2.1, Spark version 2.4.5, Java JDK version 1.8, and HDFS block size
128MB are used. The replication factor is set at 2 (default value is 3) to facilitate the decommissioning of data
nodes. The total number of experiments per Apache Hadoop and Spark environment is 240. 4GB, 8GB, and 16GB
data workload are carried out for all experiments. Data compression reduces the storage usage. The analyzes of
compressed and raw-files compression ratios are illustrated in Figure 1.

Fig. 1. Compression ratio for 4GB, 8GBB, and 16GB data workloads

The figure shows the best compression ratio with a 13-17% of the average value for gzip, zstandard, and bzip2
algorithms. The compression ratio difference between gzip and bzip2 is about 4%. According to the benchmarks,
the execution time of gzip is about seven times faster than the bzip2 compression. The lzo, lz4, and snappy
algorithms have 26-27% low compression ratios with about seven times faster execution time compere to the gzip
compression. The remarkable outcome from this experiment is that with Spark with the lz4 compression format,
and with 8GB and 16 GB data seta, it was able to obtain a 47% improvement at the cost of a 15-25% and 18-28%
memory usage for uncompressed input data; 20-70% CPU and 18-20% memory usage for splittable compressed
data; and 8-10% CPU and 14-28% memory usage for non-splittable compressed data. The LogAnalyzer's
execution time for Hadoop is optimized up to 4.4% with the lz4 compression format regardless of the input data
size (see fig. 2).

Fig. 2. The LogAnalyzer experiment performs for 4GB, 8GB, and 16GB data on 16 nodes Hadoop and Spark
configuration

7

The standard deviation for Hadoop is up to 2% when eight-node and four-node are implemented, and 9% for
eight-node and 27% for four-node configurations for Spark. The average CPU usage of all nodes on the Hadoop
cluster is 6–6.5%, while the memory usage is 12-16.5%. On Spark for uncompressed input data, the average CPU
usage is 15-25% and 18-28% memory, for splittable compressed data 20-70% CPU and 18-20% memory, for non-
splittable compressed data 8-10% CPU and 14-28% memory. On Hadoop, average resource usage is almost the
same.
The picture is different if the WordCount massive simulation application is studied instead of the LogAnalyzer
(see fig. 3). The experiments show that in the case of using 16 GB input data, the compression codec slightly
improves the execution time for the Hadoop framework and significantly improves the execution time
framework. lz4 and lzo codecs show the best performance for both cases. Within the Hadoop lz4 has a bit higher
performance than lzo and on Spark the opposite (lzo shows lower execution time). The Hadoop execution time
for 8 and 16 nodes configuration is almost the same, but on four-node, the average execution time increases by
1.4%. On the Spark 8 node cluster, the average execution time increases by 17% and on the four-node cluster by
51%. On the Hadoop cluster, the average CPU usage is 5.3-6.7% and memory 12-17.3%. On the Spark cluster
with uncompressed input data, CPU usage is 20-47% and memory 30-42%. For input data compressed with non-
splittable codec, the average CPU usage is 6-7%, memory 20-30%, and for data compressed with splittable codec
CPU -20-50%, memory 30-70%. As LogAnalyzer for WordCount job on the Hadoop environment, the average
resource usage is almost the same. The best performance for Wordcount job shows lzo codec, which is 8% faster
than uncompressed data but uses 12% more CPU and 23% more memory on average.

Fig. 3. WorCount experiment performance for 4GB, 8GB, and 16GB data on 16 nodes Hadoop and Spark
configuration

The experiments show that the splittable codecs improve the execution time of LogAnalyzer and WordCount
applications, besides the Bzip2 slow compression algorithm for the Hadoop cluster. Gzip and Snappy non-
splittable codecs decrease the storage size and increase execution time. The splittable compression codecs have a
substantial impact on the Spark environment. The compression codecs were not used for TereGen and TestDFSIO
benchmarks, as an algorithm artificially generates the data. Figure 4 shows the TestDFSIO benchmark’s execution
time on Hadoop and Spark environments with 16 node configurations.

Fig. 4. TestDFSIO benchmark execution time for 4GB, 8GB, and 16GB data on 16 node Hadoop/Spark

8

On eight-node configuration cluster benchmarks with write option work in the approximate same time. The
deviation for Hadoop is 2%, and Spark is 1%. For reading option execution time increases by 82% are on Hadoop
and 31% on Spark. On four-node configuration, write works 4% slower on Hadoop and 18% on Spark, for read
option works three times slower on both environments. Figure 6 shows TeraGen, TeraSort, TeraValidate
benchmark’s execution time on Hadoop and Spark environments with 16 node configurations. TeraGen and
TeraValidate work faster on Hadoop and TeraSort on Spark. On average, the simulation time of benchmarks is
12% smaller for Spark compared to Hadoop. On eight-node Hadoop and Spark clusters, the results of TeraGen
and TeraSort are almost the same with only a 2% difference, but for TeraValidate, the benchmark execution time
increases by 20% on Hadoop and 50% on Spark. On four nodes, Hadoop cluster TeraGen on average is faster by
13%, Terasort 3%, and Teravalidate is slower by 43% compared with 16 node configurations. On four nodes,
Spark cluster TeraGen is faster by 7%, TeraSort is slower by 4%, and Teravalidate by 72%. In both environments,
the average CPU usage is 5-7%, memory 12-14% on Hadoop, and 15-16% on Spark.

Fig. 6. TeraSort benchmark execution time for 4GB, 8GB, and 16GB data on 16 nodes Hadoop/Spark.

In the k-means clustering application, the 1GB, 2GB, 4GB input data sizes are used for the experiments.
According to Figure 6, gzip, snappy, and zstandart codecs show almost the same performance as if the input is
uncompressed.

Fig. 6. K-means benchmark execution time for 1GB, 2GB, and 4GB data on 16 nodes Hadoop/Spark.

The scenarios are entirely different in the Spark cluster case, as the splittable codecs besides bzip2 show better
performance than if data is uncompressed. The best performance is reached using the lz4 codec by having about
93% of the compression ratio. Instead of Hadoop (deviation is 1%), the execution time on average increases by
30% and 93% on four-node and eight-node configuration of Spark. On Hadoop, the best performance shows
zstandard codec 6.4% faster than for uncompressed data. On Hadoop k-means cluster, the average resource usage
is almost the same compere to the LogAnalyzer and WordCount. The average CPU usage is 6-7%, while memory
usage is 16-18%. The worst performance on spark show gzip, zstandard and snappy codec, which use, on average,
6-8% CPU and 30-48 % memory. If k-means input data is uncompressed, the average CPU usage is 37-50%,
while the memory is 30-44%. In the case of the other codecs, the average CPU usage is 11-56%, while the memory
is 26-44%. The best performance on Spark cluster show lz4, which is, on average, 8.8% faster than for not
compressed input data, but uses on average 3% more CPU and 1% less memory.

9

The statistical analyzes of the memory and processor usages are presented in Table 1 to present the characteristics
of the data and to study the dispersion. In the case of TestDFSIO and TeraSort that is very reliable, while the
LogAnalyzer, WordCount, and K-means, there is a significant variance between the data and the statistical
average.

Table 1. SD and Means analyzes five workloads.

No Job Framework CPU usage Memory usage
Mean (%) SD Mean (%) SD

1 LogAnalyzer Hadoop 6.29 0.17 15.23 1.18
Spark 31.21 20.36 21.97 3.66

2 WordCount Hadoop 6.01 0.35 15.57 1.43
Spark 28.93 15.54 42.11 16.81

3 TestDFSIO Hadoop 4.74 0.49 17.76 0.15
Spark 4.74 0.80 14.85 0.21

4 TeraSort Hadoop 6.15 0.68 12.96 1.08
Spark 6.21 0.59 15.31 0.44

5 K-means Hadoop 6.67 0.33 17.21 0.72
Spark 22.58 16.21 34.09 5.70

References

1. Chen, J., Y. Chen, X. Du, C. Li, J. Lu, S. Zhao, X. Zhou. Big data challenge: a data management perspective.
- Frontiers of Computer Science, Vol. 7, 2013, No 2, pp. 157-164.

2. Lublinsky, B., K. T. Smith, A. Yakubovich. Professional Hadoop Solutions, p. 504, John Wiley & Sons,
Indiana, USA, 2013.

3. Zaharia, M., R.S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen, S. Venkataraman, M.
J. Franklin, A. Ghodsi. Apache spark: a unified engine for big data processing. - Communications of the
ACM, Vol. 59, 2016, No 11, pp. 56-65.

4. Cheng, D., X. Zhou, P. Lama, Ji Mike, C. Jiang. Energy efficiency aware task assignment with dvfs in
heterogeneous hadoop clusters. - IEEE transactions on parallel and distributed systems, Vol. 29, 2017, No 1,
pp. 70-82.

5. Nitu, V., A. Kocharyan, H. Yaya, A. Tchana, D. Hagimont, H. Astsatryan. Working Set Size Estimation
Techniques in Virtualized Environments: One Size Does not Fit All - ACM Meas. Anal. Comput. Syst., Vol.
2, 2018, pp. 1-21.

6. Kothuri, P., D. Garcia, J. Hermans. Developing and Optimizing Applications in Hadoop. - J PY - Journal of
Physics: Conference Series, Vol. 898, 2017, No 5.

7. Dean, J., S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. - Communications of the
ACM, Vol. 51, 2008, No 1, pp. 107-113.

8. Won, H., M. C. Nguyen, M. S Gil, Y. S. Moon, K. Y. Whang. Moving metadata from ad hoc files to database
tables for robust, highly available, and scalable HDFS. - The Journal of Supercomputing, Vol. 73, 2017, No
6, pp. 2657-2681.

9. Uthayakumar, J., T. Vengattaraman, P. Dhavachelvan. A survey on data compression techniques: From the
perspective of data quality, coding schemes, data type and applications. - Journal of King Saud University -
Computer and Information Sciences, 2018.

10. Liu, L.Y., J. F. Wang, R. J. Wang, J. Y Lee. Design and hardware architectures for dynamic Huffman coding
– IEEE Proceedings-Computers and Digital Techniques, Vol. 142, 1995, No 6, pp.411-418.

11. Fenwick, P. M. The Burrows-Wheeler Transform for Block Sorting Text Compression: Principles and
Improvements. - The Computer Journal, Vol. 39, 1996, No 9, pp. 731–740.

12. Fang, J., J. Chen, Z. Al-Ars, P. Hofstee, J. Hidders. Work-in-Progress: A High-Bandwidth Snappy
Decompressor in Reconfigurable Logic. – In: IEEE International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ ISSS), Turin, Italy, 30 Sept.-5 Oct. 2018, pp. 1-2.

13. Liu, W., F. Mei, C. Wang, M. O’Neill, E. E. Swartzlander, Data Compression Device Based on Modified LZ4
Algorithm. - IEEE Transactions on Consumer Electronics, Vol. 64, 2018, No 1, pp. 110–117.

14. Rattanaopas, K., S. Kaewkeeree. Improving Hadoop MapReduce performance with data compression: A
study using wordcount job. - In IEEE 14th International Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology (ECTI-CON), 2017, pp. 564-567.

15. Haider, A., X. Yang, N. Liu, X. H. Sun, S. He. Ic-data: Improving compressed data processing in hadoop. -
In IEEE 22nd International Conference on High Performance Computing (HiPC), 2015, pp. 356-365.

10

16. Chen, Y., A. Ganapathi, R. H. Katz. To compress or not to compress-compute vs. io tradeoffs for mapreduce
energy efficiency. - In Proceedings of the First ACM SIGCOMM workshop on Green networking, 2010, pp.
23-28.

17. Lang, W., J. M. Patel. Energy management for MapReduce clusters. – In Proceedings of the VLDB
Endowment, 3(1-2), 2010, pp.129–139.

18. Li, W., H. Yang, Z. Luan, D. Qian. Energy prediction for MapReduce workloads. - In IEEE Ninth
International Conference on Dependable, Autonomic and Secure Computing, 2011, pp. 443-448.

19. Wirtz, T., R. Ge. Improving mapreduce energy efficiency for computation intensive workloads. - In IEEE
International Green Computing Conference and Workshops, 2011, pp. 1-8.

20. Leverich, J., C. Kozyrakis. On the energy (in)efficiency of Hadoop clusters. - ACM SIGOPS Operating
Systems Review, Vol. 44, 2010, No 1, pp. 61-65.

21. Tiwari, N., S. Sarkar, U. Bellur, M. Indrawan. An Empirical Study of Hadoop’s Energy Efficiency on a HPC
Cluster. - Procedia Computer Science, Vol. 29, 2014, pp. 62–72.

22. Tatineni, M., J. Greenberg, R. Wagner, E. Hocks, C. Irving. Hadoop deployment and performance on Gordon
data intensive supercomputer. - In Proceedings of the Conference on Extreme Science and Engineering
Discovery Environment: Gateway to Discovery, 2013, pp. 1-3.

23. Narkhede, S., T. Baraskar. HMR Log Analyzer: Analyze Web Application Logs over Hadoop MapReduce. -
International Journal of UbiComp (IJU), Vol. 4, 2013, No 3, pp. 41-51.

24. Krishna, K., M. Narasimha Murty. Genetic K-means algorithm. - IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), Vol. 29, No 3, 1999, pp. 433-439.

25. Zhao, W, Ma. H, He, Q. Parallel K-means clustering based on MapReduce. - In: CloudCom 2009, LNCS
5931. Berlin: Springer; 2009. pp. 674–9.

26. Astsatryan, H., Sahakyan, V., Shoukourian, Yu., Cros, P. H., Dayde, M., Dongarra, J., Oster, P. Strengthening
compute and data intensive capacities of Armenia. - IEEE Proceedings of 14th RoEduNet International
Conference - Networking in Education and Research (NER’2015), Craiova, Romania; September 2015, pp.
28–33.

27. Astsatryan, H., Narsisian, W., Kocharyan, A., da Costa, G., Hankel, A., Oleksiak, A. Energy Optimization
Methodology for e-Infrastructure Providers. - Willey Concurrency and Computation: Practice and
Experience, Vol. 29, 2017, No. 10, doi: 10.1002/cpe.4073.

28. Nitu, V., Kocharyan, A., Yaya, H., Tchana, A., Hagimont, D., Astsatryan, H. Working set size estimation
techniques in virtualized environments: One size does not fit all. - Proceedings of the ACM on Measurement
and Analysis of Computing Systems, 2(1), 2018, pp. 1-22.

11

3. Goals of the research project

The resource optimization addresses the growing needs of Big data processing and analysis. The traditional
methods and tools are mainly dedicated to CPU resource optimization, but the memory and I/O consume a
significant portion of Big data processing resources. Many scientific studies have been dedicated to the memory
optimizations in hardware [4], kernel memory [5], and middleware [6] layers. The project aims to optimize the
resources in the application level using several compression algorithms within the Apache Hadoop and Spark
frameworks, aiming to reduce the size of the files to be processed (to be loaded into memory, and written back to
the disk). This approach increases the CPU load of the system overall, but as already mentioned, the CPU is not
the most consumed resource in such systems, and it often stays underutilized. In the meantime, the splittable
compressing algorithms split and merge back the data while using the MapReduce development model. The
suggested system is based on Apache Hadoop and Apache Spark general-purpose Big Data computing
frameworks. If the Apache Hadoop is a model for reading and writing data processing based on disk, the Apache
Spark performs in-memory calculations with the resilient distributed data sets. Apache Hadoop is an open-source
Java-based distributed computing framework built for applications implemented using MapReduce parallel data
processing paradigm [7] and Hadoop Distributed File System (HDFS) [8].

As a distributed file system, HDFS provides a reliable, scalable, and fault-tolerant distributed data storage. The
data is stored as blocks for handling the hardware failures. The replication factor shows the number of copies of
a block in HDFS. MapReduce has become a critical distributed processing model for large-scale data-intensive
applications like data filtering, feature extraction, or web indexing. The Map and Reduce functions are the key
components of the MapReduce programming model. The Map function processes a key/value pair for generating
a set of intermediate key/value pairs, while the Reduce function aims to merge all intermediate values associated
with the same intermediate key. When the Map tasks are completed, the intermediate output is shuffled and sorted.
The shuffle step is the only communication step between data nodes in MapReduce, during which nodes begin to
swap the intermediate outputs from the map tasks. After shuffling and sorting, the reduce phase calls the user-
defined reduce task and stores the output on HDFS.

The data compression algorithms are used in the suggested system to reduce the data movement cost by increasing
the computation time. MapReduce supports the implementations of several compression and decompression
algorithms called a codec. Data compression methods are classified according to data quality, codec schemas,
data, and application types [9]. The codec allows us to compress and decompress data using splittable and non-
splittable compression algorithms. The splittable compression algorithm splits the file into the compressed and
uncompressed data blocks with the fixed size of the HDFS file’s block size setting, where each of them can be
decompressed separately of the others. The Hadoop also supports a non-splittable algorithm with a serial
decompression, which usually requires longer decompression time. Therefore, the tradeoff of data compression
algorithms depends on various factors, such as degree of compression, data quality (with or without loss),
compression algorithm type, or data type. The degree of data size or I/O reduction depends on the compression
ratio, which equals compressed data divided into the uncompressed data size. The compression ratio relies on the
data and the compression algorithm. A lower ratio means less memory and I/O usages.

The data compression in Hadoop and Spark frameworks increases the storage space and improves performance
to compute the job. The compression can be implemented for input data, intermediate Map output data, and
Reduce output data stages. Intermediate compression of the map output reduces network usage during the
Mapreduce shuffle step. All nodes begin to communicate with each other and collect the map output as the phase
reduces input. If the input or intermediate output of the map phase is compressed, the framework chooses a
decompression algorithm before processing according to the file extension (see table 2).

Table 2. A summary of compression formats available in Hadoop

No Compression format File extension Splittable
1 gzip .gz No
2 bzip2 .bz2 Yes
3 snappy .snappy Yes (container file formats)
4 Lzo .lzo Yes (indexing algorithm)
5 lz4 .4mc Yes (4MC library)
6 zstandart .4mz Yes (4MC library)

The data is stored securely, as all selected compression codecs are lossless. The gzip and deflate codecs use
the deflate algorithm as a combination of lz77 and Huffman Coding [10]. The lz77 compression algorithm replaces

12

duplicate bit positions regarding their previous positions. The difference between gzip and deflate is the Huffman
encoding phase. The splittable compression bzip2 codec uses the Burrows-Wheeler (block-sorting) text
compression and Huffman coding [11] algorithms. Bzip2 compresses data blocks independently and can compress
data blocks in parallel. As a fast data compression and decompression library, snappy uses the ideas from lz77
[12]. Snappy blocks are non-splittable, but the files in the snappy blocks are splittable. The lzo (Lempel-Ziv-
Oberhumer) compression algorithm is a variation of the lz77 compression algorithm. The algorithm is divided
into the find the match, write the unmatched literal data, determine the length of the match, and write the match
tokens parts. The next compression algorithm is the lz4, where compressed data files consist of LZ4 sequences
that contain a token, literal length, offset, and match length [13]. Zstandart is an lz77-based algorithm developed
by Facebook to support dictionaries, a massive search box, and an entropy coding step using finite-state entropy
and Huffman coding.

13

4. Outcomes

In this project, a system enabling to find an optimal tradeoff to reach optimal performance in Apache Hadoop and
Spark frameworks is presented. 4GB, 8GB, and 16GB data workloads for diverse applications, including
TestDFSIO, TeraSort, WordCount, LogAnalyzer, and K-means, have been evaluated in Hadoop and Spark
environments. The evaluation results are used by the suggested system to choose an optimal configuration
environment. The compressed data processing analyzes show that the lz4 codec reaches Hadoop's best
performance regardless of the input data size. Meanwhile, Spark achieves the best performance with Iz4 only for
4GB input data, and zstandard codec for 8GB and 16 GB cases.

It is planned to study the energy-efficient data transfers of Apache Hadoop and Spark using RDMA-capable
networks like InfiniBand based on the developed methodology [27] and techniques [28].

14

5. Research plan and outcomes from each research stage

Short description of the work package
Work package No. 1 State-of-the-art

Work package leader Aram Kocharyan
Researchers Hrachya Astsatryan

Aram Kocharyan
Kristina Khudaverdyan

Duration 01/05/2021 - 30/11/2021

Targets − To analyse the current tendences and the state-of-the-art

Work package description A prominent data processing engine for data centers is Hadoop MapReduce
enabling users to avoid the costs of maintaining physical infrastructures. Many
studies focus on MapReduce jobs to boost the performance and minimize the
energy consumption in data centers by orders of magnitude. The authors [14-
16] have studied the effect of data compression to improve the performance
and energy efficiency for MapReduce small workloads only on four nodes
clusters. Several methods and algorithms have been constructed to determine
compression approaches to reduce data loading time and increase concurrency.
It dynamically changes the file block size based on the compression ratio. Two
dynamically selectable algorithms (tentative selection and predictive decision)
have been studied to achieve an optimal I/O performance with a periodical
compression algorithm features profiling and real-time system resource status
monitoring. The authors focus on old versions of Hadoop (based on slots)
supporting limited compression algorithms.

Several studies aim to evaluate the influence of various configuration
parameters on energy efficiency in the Hadoop framework. In [17], different
energy models have been developed to predict MapReduce jobs' energy
consumption. The job execution time and energy consumption have been
minimized simultaneously by adjusting the data replication coefficient and
data block size parameters. In [18], the authors stressed each part of
MapReduce (map, shuffle, and reduce) and energy-related components (CPU,
IO, and network) of machines. It is recommended to configure various
parameters, such as data replication coefficient, file block size, number nodes,
or type of nodes. A linear regression model has been designed to predict the
energy consumption of MapReduce workloads. The experimental results
indicate that significant energy savings can be achieved from accurate resource
allocation and intelligent dynamic voltage and frequency scaling scheduling
for computation-intensive applications [19]. The paper [20] presents our early
work on modifying Hadoop to allow the scale-down of operational clusters. In
[21], strategies are proposed for adjusting the degree of parallelism, network
bandwidth, and power management functions in the HPC cluster for energy-
efficient execution of map-reduce jobs. They also noted that increasing
concurrency usually means energy efficiency or speed-up.

The presented papers mainly explore either data compression or the influence
of various configuration parameters on energy efficiency in the Hadoop/Spark
frameworks to boost the Hadoop MapReduce job performance. This paper
aims to present a system that selects optimal compression tools and tunes the

15

compression factor to reach the best performance. The latest versions of
Apache Hadoop and Spark's compression codecs were used to evaluate the
benchmarks, tools, and applications.

WP Deliverables Planned delivery date

Report 01/12/2021

Short description of the work package
Work package No. 2 To develop a decision-making service

Work package leader Hrachya Astsatryan
Researchers Hrachya Astsatryan

Aram Kocharyan
Kristina Khudaverdyan

Duration 01/12/2021 - 30/04/2022

Targets − To develop a decision-making service

Work package description The suggested system allows to study the tradeoff, with compression between
saving CPU and saving I/O, to evaluate the efficiency of Big data applications
using Hadoop and Spark frameworks based on compression tools and tuning
the compression factor. The performance optimization methodology allows
users to explore and optimize Big data applications.

A decision-making service sends the application type and the complexity to
the service trading module through the REST API to select an optimal
configuration. Several MapReduce types benchmarks, tools, and applications
have been studied and implemented in the simulation module. As a distributed
I/O benchmark tool, the TestDFSIO benchmark is used to stress test HDFS and
determine cluster I/O speeds [22]. TestDFSIO is also essential to identify
bottlenecks in networks and stress the hardware, OS, and Spark/Hadoop
configuration on cluster nodes. TestDFSIO performs parallel reading and
writing bulk data using separate Map tasks (or Spark jobs). The statistics are
collected in the Reduce task to get a summary of HDFS throughput and average
I/O.

WP Deliverables Planned delivery date

Method 01/5/2022

Short description of the work package
Work package No. 3 To validate the suggested method

Work package leader Hrachya Astsatryan
Researchers Hrachya Astsatryan

Aram Kocharyan
Kristina Khudaverdyan

16

Duration 01/12/2021 - 30/04/2022

Targets − To validate the suggested method

Work package description There are many MapReduce applications used to test both layers of HDFS and
MapReduce. The terasort package is used to check the HDFS and MapReduce
layers, consisting of TeraGen designed to generate data, Terasort to sort data,
and TeraValidate to verify data sorting. TeraGen is designed to generate a large
amount of data, which is the input to TeraSort. The size of the generated data
and the output are the input arguments. Terasort sorts the data generated by
TeraGen. TeraValidate checks the sorted TeraSort output. The input and output
paths are the TeraSort and TeraValidate benchmarks arguments.

The WordCount and LogAnalyzer are studied, as MapReduce applications
[23]. The WordCount workload reads text files and counts how often words
are found. The LogAnalyzer workload reads log file as an input, detects lines
that match the entered regular expression, and outputs a report that informs if
the keyword is present or not and if present how many times.

The clustering data analysis technique divides the entire data into
groups according to a similarity measure. K-means clustering is one of the
simplest, powerful, and popular unsupervised machine learning algorithms in
Data Science [24]. Parallel K-means MapReduce application has been used,
allowing to manage large datasets finding distances between objects [25]. 1, 2,
and 4 centroids have been identified for the experiments to allocate every data
point to the nearest cluster.

The input data is compressed using the compression algorithms. Three types
of input data, seven compression algorithms and five workloads (TestDFSIO,
TeraSort, WordCount, LogAnalyzer, K-means), are evaluated in Hadoop and
Spark environments metrics to study environment and compression algorithms
for different workloads.

WP Deliverables Planned delivery date

Report 01/5/2022

Short description of the work package
Work package No. 4 COORDINATION, FINANCIAL MANAGEMENT, DISSEMINATION

Work package leader Hrachya Astsatryan
Researchers Hrachya Astsatryan

Areg Mickaelian
Kristina Khudaverdyan

Duration 01/05/2021 - 30/04/2022

Targets − Coordination
− Financial management
− Dissemination

17

Work package description The aim of WP4 is to ensure the consistency of the overall resources used and
the work performed, control the progress of the work, organise the production
of meetings, resolve any project internal conflicts, and act as an interface for
reporting on project progress. In order to successfully manage the project, a
stable management structure is being proposed, with a clear set of roles and
responsibilities of all actors; as well as clear set of procedures for information
flow and other key management aspects.

WP Deliverables Planned delivery date

Report 01/5/2022

18

6. Beneficiaries of the outcomes, impact, dissemination and
sustainability

The major dissemination and exploitation aims are raising awareness on the Big Data performance tradeoff
services offered and the benefits of Big Data management frameworks and platforms; promoting the widespread
use of developed services and creating incentives to attract new services and users; performing science
communication activities with a focus on the Resource management optimization research communities, to
increase visibility within scientific, academic and technical circles; supporting sustainability and visibility of the
research results even after the projects lifetime, particularly through the creation and the establishment of the SaaS
astro solutions; and participating to and shaping scientific outreach activities on research issues.

19

7. Technical prerequisites for project realization

We use a hybrid research computing platform combing HPC with Grid and Cloud Computing based on
ArmCluster HPC cluster, resource sharing ArmGrid Grid, and on-demand service provisioning federated cloud
infrastructures. The infrastructure is operated by IIAP. The Armenian e-infrastructure is used for the studies and
experiments, a complex national IT infrastructure consisting of networking, data, and distributed computing
infrastructures [26].

20

8. Participants in the project

LEAD RESEARCHER – PROJECT RESPONSIBLE PERSON

First and last name Hrachya Astsatryan

Academic/Professional
rank

Dr., HDR

Affiliation Institute for Informatics and Automation Problems of the
National Academy of Sciences of the Republic Armenia

Lead Researcher CV

Dr. Hrachya Astsatryan (m) is the head of the “Scientific Computing” Centre at IIAP. H. Astsatryan is a country
delegate of the European Open Science Cloud, board member of Internet Society Armenian Chapter, member
of H2020-ICT Committee, NCP of European Research Infrastructures, and a member of the Institute of
Electrical and Electronics Engineers (IEEE). He holds a doctoral fellowship at the KFKI Research Institute for
Particle and Nuclear Physics, Budapest, Hungary (2005-2006) and a postdoctoral fellowship at the Institute de
Recherche en Informatique de Tulouse, Toulouse, France (2006-2007). In 2005, the President of the Republic
of Armenia awarded him for the best work in Technical Sciences and Information Technologies. In 2020, he
received an HDR (Habilitation a Diriger les Recherches) degree from the doctoral school of the Institut National
Polytechnique de Toulouse, France. During his career, H. Astsatryan participated in many international
conferences and workshops in Europe and the USA and many international Projects and Grants. He is an author
of more than 80 papers in international scientific journals and conferences. He has more than twenty years of
experience in High performance, cloud and scientific computing, Big Data, and data analytics.

Participation in international research projects
1. Reforming ARMDOCT - Doctoral Education in Armenia in line with Needs of Academia, Industry

and Current EU Practices, EC Erasmus+ KA2 Nr. 609850-EPP-1-2019-1-AM-EPPKA2-CBHE-SP,
2020-2023, (role: participant).

2. Machine Learning to tackle weather and air pollution using DAtasets of satellite imagery and digiTAl
models, Philip Morris Armenia, 2019-2020, (role: coordinator).

3. NI4OS-Europe: National Initiatives for Open Science in Europe, EC Horizon 2020 Nr. 857645, 2019
– 2021, (role: participant).

4. PROfiling the atmospheric Boundary layer at European scale (PROBE), EC Cost action (European
Cooperation in Science and Technology) CA18235, 2019 – 2021, (role: participant).

5. Understanding and modeling compound climate and weather events (DAMOCLES), EC Cost action
(European Cooperation in Science and Technology) CA17109, 2018 – 2022, (role: participant).

6. ADC4SD: Supporting Armenia in Building the Armenian Data Cube, Swiss State Secretariat for
Education, Research and Innovation, 2018 – 2020, (role: participant).

7. Promoting Academia-Industry Alliances for R&D Through Collaborative and Open Innovation
Platform (ALL4R&D), EC Erasmus+ KA2 Nr. 598719-EPP-1-2018-1-MK-EPPKA2-CBHE-JP, 2018
– 2021, (role: participant).

Lead researcher signature:

21

RESEARCHER

First and last name Aram Kocharyan

Academic/Professional
rank

Dr.

Affiliation Institute for Informatics and Automation Problems of the
National Academy of Sciences of the Republic Armenia

Lead Researcher CV

Dr. Aram Knyazyan (m) is a member of the “Scientific Computing” Centre at IIAP. He got a joint PhD degree
both in Armenia and in France. The research interests of A. Kocharyan include resource management, energy
consumption minimisation, and cloud computing. His professional interests include service tradeoff and OS
resource management and provisioning.

Participation in international research projects
1. NI4OS-Europe: National Initiatives for Open Science in Europe, EC Horizon 2020 Nr. 857645, 2019

– 2021, (role: participant).

Lead researcher signature:

RESEARCHER – PhD student

First and last name Kristina Khudaverdyan

Academic/Professional
rank

PhD student

Affiliation Assistant Professor at National Polytechnic University
of Armenia

Researchers’ CV

Mrs. Kristina Khudaverdyan is Assistant Professor and part time PhD student at National Polytechnic
University of Armenia.

Participation in international research projects
1. Change in Classroom: Promoting Innovative Teaching & Learning to Enhance Student Learning

Experience in Eastern Partnership Countries (PRINTeL), Erasmus+ KA Nr. 585760-EPP-1- 2017-1-
AMEPPKA2-CBHE-JP, 2017-2020, (role: participant)

2. Promoting Academia-Industry Alliances for R&D Through Collaborative and Open Innovation
Platform (ALL4R&D), Erasmus+ KA2 Nr. 598719-EPP-1-2018-1-MK-EPPKA2-CBHE-JP, 2018-
2021, (role: participant)

3. Transforming Architectural and Civil Engineering Education towards a Sustainable Model
(TACEESM), Erasmus+ KA Nr. 2618883-EPP-1-2020-1-IT-EPPKA2-CBHE-JP, 2020-2023, (role:
participant)

Researcher signature:

22

9. Project budget and cost

Costs Amount (Euro) Comment
Personnel costs 7200 1PM
Travel 600 Participation and presentation in one conference
Equipment 0 Using the facilities operated by NPUA/IIAP

Cooperative R&D Unit, Open-Source Software Lab
Dissemination costs 200 Booklets, brochures
Total 8000

	Project summary
	1. State of the art
	2. Recent results from own research
	3. Goals of the research project
	4. Outcomes
	4.1.

	5. Research plan and outcomes from each research stage
	6. Beneficiaries of the outcomes, impact, dissemination and sustainability
	7. Technical prerequisites for project realization
	8. Participants in the project
	9. Project budget and cost

