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Project summary

The optimization of large-scale data sets depends on the technologies and methods used. The MapReduce model, 
implemented on Apache Hadoop or Spark, allows splitting large data sets into a set of blocks distributed on several 
machines. Data compression reduces data size and transfer time between disks and memory but requires additional 
processing. Therefore, finding an optimal tradeoff is a challenge, as a high compression factor may underload 
Input/Output but overload the processor. The project aims to present a system enabling the selection of the 
compression tools and tuning the compression factor to reach the best performance in Apache Hadoop and Spark 
infrastructures based on simulation analyzes. 

Keywords: Hadoop, Spark, data compression, CPU/IO tradeoff, performance optimization, energy 
consumption. 
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1. State of the art

Big Data processing [1] is a resource-intensive operation that uses specific hardware and software. Due to the 
intense Input/Output (I/O) nature of the processing, the hardware architecture is different from the traditional 
high-performance computing (HPC) clusters or supercomputers, particularly, local disks are required for all data 
nodes. Moreover, the data processing application stack is also significantly different from traditional approaches. 
For instance, the data volume is substantially larger than in other operations, and the data sets are poorly 
structured, and various data types are available. 

The traditional relational database management systems, like SQL queries, are incapable of tackling semi-
structured or unstructured Big Data processing. Thus, the MapReduce model has been introduced, a critical 
technology for processing and generating extensive data sets. Its implementations, such as Apache Hadoop [2] or 
Spark [3], split large data sets into a set of distributed blocks, execute map tasks in parallel on these blocks, and 
finally reduce tasks for the aggregation of results. Data compression techniques are used to overcome data storage 
and network bandwidth limitations to process a massive volume of data. In Big Data infrastructures, it decreases 
the size of data chunks to minimize the time delay forced by the I/O operation and save space on local disks. 
Therefore, it is a challenge to find an optimal tradeoff, as high compression factor may underload I/O but overload 
CPU, while a weak compression factor may underload CPU but overload I/O. The ideal configuration is when 
both I/O and CPU are used entirely. CPU (respectively I/O) should not be waiting for I/O (respectively CPU) to 
reach the best performance. 

The project aims to present a system enabling the selection of the compression tools and tuning the 
compression factor to reach the best performance in Hadoop and Spark infrastructures based on simulation 
analysis.  
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2. Recent results from own research

Mainly, the Hadoop and Spark cluster consisting of a master and 16 slave nodes is used for the experiments with 
five distinct configurations: 1+4, 1+8, and 1+16. Each node in the cluster runs the Openstack middleware with 
one virtual machine per node using Ubuntu server 18.04 operating system, 3 GB of memory, and a 120 GB SATA 
shared hard disk. The Hadoop version 3.2.1, Spark version 2.4.5, Java JDK version 1.8, and HDFS block size 
128MB are used. The replication factor is set at 2 (default value is 3) to facilitate the decommissioning of data 
nodes. The total number of experiments per Apache Hadoop and Spark environment is 240. 4GB, 8GB, and 16GB 
data workload are carried out for all experiments. Data compression reduces the storage usage. The analyzes of 
compressed and raw-files compression ratios are illustrated in Figure 1. 

Fig. 1. Compression ratio for 4GB, 8GBB, and 16GB data workloads 

The figure shows the best compression ratio with a 13-17% of the average value for gzip, zstandard, and bzip2 
algorithms. The compression ratio difference between gzip and bzip2 is about 4%. According to the benchmarks, 
the execution time of gzip is about seven times faster than the bzip2 compression. The lzo, lz4, and snappy 
algorithms have 26-27% low compression ratios with about seven times faster execution time compere to the gzip 
compression. The remarkable outcome from this experiment is that with Spark with the lz4 compression format, 
and with 8GB and 16 GB data seta, it was able to obtain a 47% improvement at the cost of a 15-25% and 18-28% 
memory usage for uncompressed input data; 20-70% CPU and 18-20% memory usage for splittable compressed 
data; and 8-10% CPU and 14-28% memory usage for non-splittable compressed data. The LogAnalyzer's 
execution time for Hadoop is optimized up to 4.4% with the lz4 compression format regardless of the input data 
size (see fig. 2).  

Fig. 2. The LogAnalyzer experiment performs for 4GB, 8GB, and 16GB data on 16 nodes Hadoop and Spark 
configuration 
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The standard deviation for Hadoop is up to 2% when eight-node and four-node are implemented, and 9% for 
eight-node and 27% for four-node configurations for Spark. The average CPU usage of all nodes on the Hadoop 
cluster is 6–6.5%, while the memory usage is 12-16.5%. On Spark for uncompressed input data, the average CPU 
usage is 15-25% and 18-28% memory, for splittable compressed data 20-70% CPU and 18-20% memory, for non-
splittable compressed data 8-10% CPU and 14-28% memory. On Hadoop, average resource usage is almost the 
same. 
The picture is different if the WordCount massive simulation application is studied instead of the LogAnalyzer 
(see fig. 3). The experiments show that in the case of using 16 GB input data, the compression codec slightly 
improves the execution time for the Hadoop framework and significantly improves the execution time 
framework. lz4 and lzo codecs show the best performance for both cases. Within the Hadoop lz4 has a bit higher 
performance than lzo and on Spark the opposite (lzo shows lower execution time). The Hadoop execution time 
for 8 and 16 nodes configuration is almost the same, but on four-node, the average execution time increases by 
1.4%. On the Spark 8 node cluster, the average execution time increases by 17% and on the four-node cluster by 
51%. On the Hadoop cluster, the average CPU usage is 5.3-6.7% and memory 12-17.3%. On the Spark cluster 
with uncompressed input data, CPU usage is 20-47% and memory 30-42%. For input data compressed with non-
splittable codec, the average CPU usage is 6-7%, memory 20-30%, and for data compressed with splittable codec 
CPU -20-50%, memory 30-70%. As LogAnalyzer for WordCount job on the Hadoop environment, the average 
resource usage is almost the same. The best performance for Wordcount job shows lzo codec, which is 8% faster 
than uncompressed data but uses 12% more CPU and 23% more memory on average. 

Fig. 3. WorCount experiment performance for 4GB, 8GB, and 16GB data on 16 nodes Hadoop and Spark 
configuration 

The experiments show that the splittable codecs improve the execution time of LogAnalyzer and WordCount 
applications, besides the Bzip2 slow compression algorithm for the Hadoop cluster. Gzip and Snappy non-
splittable codecs decrease the storage size and increase execution time. The splittable compression codecs have a 
substantial impact on the Spark environment. The compression codecs were not used for TereGen and TestDFSIO 
benchmarks, as an algorithm artificially generates the data. Figure 4 shows the TestDFSIO benchmark’s execution 
time on Hadoop and Spark environments with 16 node configurations. 

Fig. 4. TestDFSIO benchmark execution time for 4GB, 8GB, and 16GB data on 16 node Hadoop/Spark 
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On eight-node configuration cluster benchmarks with write option work in the approximate same time. The 
deviation for Hadoop is 2%, and Spark is 1%. For reading option execution time increases by 82% are on Hadoop 
and 31% on Spark. On four-node configuration, write works 4% slower on Hadoop and 18% on Spark, for read 
option works three times slower on both environments. Figure 6 shows TeraGen, TeraSort, TeraValidate 
benchmark’s execution time on Hadoop and Spark environments with 16 node configurations. TeraGen and 
TeraValidate work faster on Hadoop and TeraSort on Spark. On average, the simulation time of benchmarks is 
12% smaller for Spark compared to Hadoop. On eight-node Hadoop and Spark clusters, the results of TeraGen 
and TeraSort are almost the same with only a 2% difference, but for TeraValidate, the benchmark execution time 
increases by 20% on Hadoop and 50% on Spark. On four nodes, Hadoop cluster TeraGen on average is faster by 
13%, Terasort 3%, and Teravalidate is slower by 43% compared with 16 node configurations. On four nodes, 
Spark cluster TeraGen is faster by 7%, TeraSort is slower by 4%, and Teravalidate by 72%. In both environments, 
the average CPU usage is 5-7%, memory 12-14% on Hadoop, and 15-16% on Spark. 

Fig. 6. TeraSort benchmark execution time for 4GB, 8GB, and 16GB data on 16 nodes Hadoop/Spark. 

In the k-means clustering application, the 1GB, 2GB, 4GB input data sizes are used for the experiments. 
According to Figure 6, gzip, snappy, and zstandart codecs show almost the same performance as if the input is 
uncompressed. 

Fig. 6. K-means benchmark execution time for 1GB, 2GB, and 4GB data on 16 nodes Hadoop/Spark. 

The scenarios are entirely different in the Spark cluster case, as the splittable codecs besides bzip2 show better 
performance than if data is uncompressed. The best performance is reached using the lz4 codec by having about 
93% of the compression ratio. Instead of Hadoop (deviation is 1%), the execution time on average increases by 
30% and 93% on four-node and eight-node configuration of Spark. On Hadoop, the best performance shows 
zstandard codec 6.4% faster than for uncompressed data. On Hadoop k-means cluster, the average resource usage 
is almost the same compere to the LogAnalyzer and WordCount. The average CPU usage is 6-7%, while memory 
usage is 16-18%. The worst performance on spark show gzip, zstandard and snappy codec, which use, on average, 
6-8% CPU and 30-48 % memory. If k-means input data is uncompressed, the average CPU usage is 37-50%, 
while the memory is 30-44%. In the case of the other codecs, the average CPU usage is 11-56%, while the memory 
is 26-44%. The best performance on Spark cluster show lz4, which is, on average, 8.8% faster than for not 
compressed input data, but uses on average 3% more CPU and 1% less memory. 
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The statistical analyzes of the memory and processor usages are presented in Table 1 to present the characteristics 
of the data and to study the dispersion. In the case of TestDFSIO and TeraSort that is very reliable, while the 
LogAnalyzer, WordCount, and K-means, there is a significant variance between the data and the statistical 
average. 

Table 1. SD and Means analyzes five workloads. 

No Job Framework CPU usage Memory usage 
Mean (%) SD Mean (%) SD 

1 LogAnalyzer Hadoop 6.29 0.17 15.23 1.18 
Spark 31.21 20.36 21.97 3.66 

2 WordCount Hadoop 6.01 0.35 15.57 1.43 
Spark 28.93 15.54 42.11 16.81 

3 TestDFSIO Hadoop 4.74 0.49 17.76 0.15 
Spark 4.74 0.80 14.85 0.21 

4 TeraSort Hadoop 6.15 0.68 12.96 1.08 
Spark 6.21 0.59 15.31 0.44 

5 K-means Hadoop 6.67 0.33 17.21 0.72 
Spark 22.58 16.21 34.09 5.70 
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3. Goals of the research project

The resource optimization addresses the growing needs of Big data processing and analysis. The traditional 
methods and tools are mainly dedicated to CPU resource optimization, but the memory and I/O consume a 
significant portion of Big data processing resources. Many scientific studies have been dedicated to the memory 
optimizations in hardware [4], kernel memory [5], and middleware [6] layers. The project aims to optimize the 
resources in the application level using several compression algorithms within the Apache Hadoop and Spark 
frameworks, aiming to reduce the size of the files to be processed (to be loaded into memory, and written back to 
the disk). This approach increases the CPU load of the system overall, but as already mentioned, the CPU is not 
the most consumed resource in such systems, and it often stays underutilized. In the meantime, the splittable 
compressing algorithms split and merge back the data while using the MapReduce development model. The 
suggested system is based on Apache Hadoop and Apache Spark general-purpose Big Data computing 
frameworks. If the Apache Hadoop is a model for reading and writing data processing based on disk, the Apache 
Spark performs in-memory calculations with the resilient distributed data sets. Apache Hadoop is an open-source 
Java-based distributed computing framework built for applications implemented using MapReduce parallel data 
processing paradigm [7] and Hadoop Distributed File System (HDFS) [8]. 

As a distributed file system, HDFS provides a reliable, scalable, and fault-tolerant distributed data storage. The 
data is stored as blocks for handling the hardware failures. The replication factor shows the number of copies of 
a block in HDFS. MapReduce has become a critical distributed processing model for large-scale data-intensive 
applications like data filtering, feature extraction, or web indexing. The Map and Reduce functions are the key 
components of the MapReduce programming model. The Map function processes a key/value pair for generating 
a set of intermediate key/value pairs, while the Reduce function aims to merge all intermediate values associated 
with the same intermediate key. When the Map tasks are completed, the intermediate output is shuffled and sorted. 
The shuffle step is the only communication step between data nodes in MapReduce, during which nodes begin to 
swap the intermediate outputs from the map tasks. After shuffling and sorting, the reduce phase calls the user-
defined reduce task and stores the output on HDFS. 

The data compression algorithms are used in the suggested system to reduce the data movement cost by increasing 
the computation time. MapReduce supports the implementations of several compression and decompression 
algorithms called a codec. Data compression methods are classified according to data quality, codec schemas, 
data, and application types [9]. The codec allows us to compress and decompress data using splittable and non-
splittable compression algorithms. The splittable compression algorithm splits the file into the compressed and 
uncompressed data blocks with the fixed size of the HDFS file’s block size setting, where each of them can be 
decompressed separately of the others. The Hadoop also supports a non-splittable algorithm with a serial 
decompression, which usually requires longer decompression time. Therefore, the tradeoff of data compression 
algorithms depends on various factors, such as degree of compression, data quality (with or without loss), 
compression algorithm type, or data type. The degree of data size or I/O reduction depends on the compression 
ratio, which equals compressed data divided into the uncompressed data size. The compression ratio relies on the 
data and the compression algorithm. A lower ratio means less memory and I/O usages. 

The data compression in Hadoop and Spark frameworks increases the storage space and improves performance 
to compute the job. The compression can be implemented for input data, intermediate Map output data, and 
Reduce output data stages. Intermediate compression of the map output reduces network usage during the 
Mapreduce shuffle step. All nodes begin to communicate with each other and collect the map output as the phase 
reduces input. If the input or intermediate output of the map phase is compressed, the framework chooses a 
decompression algorithm before processing according to the file extension (see table 2). 

Table 2. A summary of compression formats available in Hadoop 

No Compression format File extension Splittable 
1 gzip .gz No 
2 bzip2 .bz2 Yes 
3 snappy .snappy Yes (container file formats) 
4 Lzo .lzo Yes (indexing algorithm) 
5 lz4 .4mc Yes (4MC library) 
6 zstandart .4mz Yes (4MC library) 

The data is stored securely, as all selected compression codecs are lossless. The gzip and deflate codecs use 
the deflate algorithm as a combination of lz77 and Huffman Coding [10]. The lz77 compression algorithm replaces 
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duplicate bit positions regarding their previous positions. The difference between gzip and deflate is the Huffman 
encoding phase. The splittable compression bzip2 codec uses the Burrows-Wheeler (block-sorting) text 
compression and Huffman coding [11] algorithms. Bzip2 compresses data blocks independently and can compress 
data blocks in parallel. As a fast data compression and decompression library, snappy uses the ideas from lz77 
[12]. Snappy blocks are non-splittable, but the files in the snappy blocks are splittable. The lzo (Lempel-Ziv-
Oberhumer) compression algorithm is a variation of the lz77 compression algorithm. The algorithm is divided 
into the find the match, write the unmatched literal data, determine the length of the match, and write the match 
tokens parts. The next compression algorithm is the lz4, where compressed data files consist of LZ4 sequences 
that contain a token, literal length, offset, and match length [13]. Zstandart is an lz77-based algorithm developed 
by Facebook to support dictionaries, a massive search box, and an entropy coding step using finite-state entropy 
and Huffman coding. 
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4. Outcomes

In this project, a system enabling to find an optimal tradeoff to reach optimal performance in Apache Hadoop and 
Spark frameworks is presented. 4GB, 8GB, and 16GB data workloads for diverse applications, including 
TestDFSIO, TeraSort, WordCount, LogAnalyzer, and K-means, have been evaluated in Hadoop and Spark 
environments. The evaluation results are used by the suggested system to choose an optimal configuration 
environment. The compressed data processing analyzes show that the lz4 codec reaches Hadoop's best 
performance regardless of the input data size. Meanwhile, Spark achieves the best performance with Iz4 only for 
4GB input data, and zstandard codec for 8GB and 16 GB cases.  

It is planned to study the energy-efficient data transfers of Apache Hadoop and Spark using RDMA-capable 
networks like InfiniBand based on the developed methodology [27] and techniques [28]. 
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5. Research plan and outcomes from each research stage

Short description of the work package 
Work package No. 1 State-of-the-art 

Work package leader Aram Kocharyan 
Researchers Hrachya Astsatryan 

Aram Kocharyan 
Kristina Khudaverdyan  

Duration 01/05/2021 - 30/11/2021 

Targets − To analyse the current tendences and the state-of-the-art 

Work package description A prominent data processing engine for data centers is Hadoop MapReduce
enabling users to avoid the costs of maintaining physical infrastructures. Many 
studies focus on MapReduce jobs to boost the performance and minimize the 
energy consumption in data centers by orders of magnitude. The authors [14-
16] have studied the effect of data compression to improve the performance
and energy efficiency for MapReduce small workloads only on four nodes 
clusters. Several methods and algorithms have been constructed to determine 
compression approaches to reduce data loading time and increase concurrency. 
It dynamically changes the file block size based on the compression ratio. Two 
dynamically selectable algorithms (tentative selection and predictive decision) 
have been studied to achieve an optimal I/O performance with a periodical 
compression algorithm features profiling and real-time system resource status 
monitoring. The authors focus on old versions of Hadoop (based on slots) 
supporting limited compression algorithms. 

Several studies aim to evaluate the influence of various configuration 
parameters on energy efficiency in the Hadoop framework. In [17], different 
energy models have been developed to predict MapReduce jobs' energy 
consumption. The job execution time and energy consumption have been 
minimized simultaneously by adjusting the data replication coefficient and 
data block size parameters. In [18], the authors stressed each part of 
MapReduce (map, shuffle, and reduce) and energy-related components (CPU, 
IO, and network) of machines. It is recommended to configure various 
parameters, such as data replication coefficient, file block size, number nodes, 
or type of nodes. A linear regression model has been designed to predict the 
energy consumption of MapReduce workloads. The experimental results 
indicate that significant energy savings can be achieved from accurate resource 
allocation and intelligent dynamic voltage and frequency scaling scheduling 
for computation-intensive applications [19]. The paper [20] presents our early 
work on modifying Hadoop to allow the scale-down of operational clusters. In 
[21], strategies are proposed for adjusting the degree of parallelism, network 
bandwidth, and power management functions in the HPC cluster for energy-
efficient execution of map-reduce jobs. They also noted that increasing 
concurrency usually means energy efficiency or speed-up. 

The presented papers mainly explore either data compression or the influence 
of various configuration parameters on energy efficiency in the Hadoop/Spark 
frameworks to boost the Hadoop MapReduce job performance. This paper 
aims to present a system that selects optimal compression tools and tunes the 
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compression factor to reach the best performance. The latest versions of 
Apache Hadoop and Spark's compression codecs were used to evaluate the 
benchmarks, tools, and applications. 

WP Deliverables Planned delivery date 

Report 01/12/2021 

Short description of the work package 
Work package No. 2 To develop a decision-making service 

Work package leader Hrachya Astsatryan 
Researchers Hrachya Astsatryan 

Aram Kocharyan 
Kristina Khudaverdyan   

Duration 01/12/2021 - 30/04/2022 

Targets − To develop a decision-making service 

Work package description The suggested system allows to study the tradeoff, with compression between 
saving CPU and saving I/O, to evaluate the efficiency of Big data applications 
using Hadoop and Spark frameworks based on compression tools and tuning 
the compression factor. The performance optimization methodology allows 
users to explore and optimize Big data applications. 

A decision-making service sends the application type and the complexity to 
the service trading module through the REST API to select an optimal 
configuration. Several MapReduce types benchmarks, tools, and applications 
have been studied and implemented in the simulation module. As a distributed 
I/O benchmark tool, the TestDFSIO benchmark is used to stress test HDFS and 
determine cluster I/O speeds [22]. TestDFSIO is also essential to identify 
bottlenecks in networks and stress the hardware, OS, and Spark/Hadoop 
configuration on cluster nodes. TestDFSIO performs parallel reading and 
writing bulk data using separate Map tasks (or Spark jobs). The statistics are 
collected in the Reduce task to get a summary of HDFS throughput and average 
I/O. 

WP Deliverables Planned delivery date 

Method 01/5/2022 

Short description of the work package 
Work package No. 3 To validate the suggested method 

Work package leader Hrachya Astsatryan 
Researchers Hrachya Astsatryan 

Aram Kocharyan 
Kristina Khudaverdyan 
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Duration 01/12/2021 - 30/04/2022 

Targets − To validate the suggested method 

Work package description There are many MapReduce applications used to test both layers of HDFS and
MapReduce. The terasort package is used to check the HDFS and MapReduce 
layers, consisting of TeraGen designed to generate data, Terasort to sort data, 
and TeraValidate to verify data sorting. TeraGen is designed to generate a large 
amount of data, which is the input to TeraSort. The size of the generated data 
and the output are the input arguments. Terasort sorts the data generated by 
TeraGen. TeraValidate checks the sorted TeraSort output. The input and output 
paths are the TeraSort and TeraValidate benchmarks arguments. 

The WordCount and LogAnalyzer are studied, as MapReduce applications 
[23]. The WordCount workload reads text files and counts how often words 
are found. The LogAnalyzer workload reads log file as an input, detects lines 
that match the entered regular expression, and outputs a report that informs if 
the keyword is present or not and if present how many times.  

The clustering data analysis technique divides the entire data into 
groups according to a similarity measure. K-means clustering is one of the 
simplest, powerful, and popular unsupervised machine learning algorithms in 
Data Science [24]. Parallel K-means MapReduce application has been used, 
allowing to manage large datasets finding distances between objects [25]. 1, 2, 
and 4 centroids have been identified for the experiments to allocate every data 
point to the nearest cluster. 

The input data is compressed using the compression algorithms. Three types 
of input data, seven compression algorithms and five workloads (TestDFSIO, 
TeraSort, WordCount, LogAnalyzer, K-means), are evaluated in Hadoop and 
Spark environments metrics to study environment and compression algorithms 
for different workloads. 

WP Deliverables Planned delivery date 

Report 01/5/2022 

Short description of the work package 
Work package No. 4 COORDINATION, FINANCIAL MANAGEMENT, DISSEMINATION 

Work package leader Hrachya Astsatryan 
Researchers Hrachya Astsatryan 

Areg Mickaelian 
Kristina Khudaverdyan 

Duration 01/05/2021 - 30/04/2022 

Targets − Coordination 
− Financial management 
− Dissemination 
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Work package description The aim of WP4 is to ensure the consistency of the overall resources used and 
the work performed, control the progress of the work, organise the production 
of meetings, resolve any project internal conflicts, and act as an interface for 
reporting on project progress. In order to successfully manage the project, a 
stable management structure is being proposed, with a clear set of roles and 
responsibilities of all actors; as well as clear set of procedures for information 
flow and other key management aspects.  

WP Deliverables Planned delivery date 

Report 01/5/2022 
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6. Beneficiaries of the outcomes, impact, dissemination and
sustainability

The major dissemination and exploitation aims are raising awareness on the Big Data performance tradeoff 
services offered and the benefits of Big Data management frameworks and platforms; promoting the widespread 
use of developed services and creating incentives to attract new services and users; performing science 
communication activities with a focus on the Resource management optimization research communities, to 
increase visibility within scientific, academic and technical circles; supporting sustainability and visibility of the 
research results even after the projects lifetime, particularly through the creation and the establishment of the SaaS 
astro solutions; and participating to and shaping scientific outreach activities on research issues. 
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7. Technical prerequisites for project realization

We use a hybrid research computing platform combing HPC with Grid and Cloud Computing based on 
ArmCluster HPC cluster, resource sharing ArmGrid Grid, and on-demand service provisioning federated cloud 
infrastructures. The infrastructure is operated by IIAP. The Armenian e-infrastructure is used for the studies and 
experiments, a complex national IT infrastructure consisting of networking, data, and distributed computing 
infrastructures [26].  
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8. Participants in the project

LEAD RESEARCHER – PROJECT RESPONSIBLE PERSON 

First and last name Hrachya Astsatryan 

Academic/Professional 
rank 

Dr., HDR 

Affiliation Institute for Informatics and Automation Problems of the 
National Academy of Sciences of the Republic Armenia 

Lead Researcher CV 

Dr. Hrachya Astsatryan (m) is the head of the “Scientific Computing” Centre at IIAP. H. Astsatryan is a country 
delegate of the European Open Science Cloud, board member of Internet Society Armenian Chapter, member 
of H2020-ICT Committee, NCP of European Research Infrastructures, and a member of the Institute of 
Electrical and Electronics Engineers (IEEE). He holds a doctoral fellowship at the KFKI Research Institute for 
Particle and Nuclear Physics, Budapest, Hungary (2005-2006) and a postdoctoral fellowship at the Institute de 
Recherche en Informatique de Tulouse, Toulouse, France (2006-2007). In 2005, the President of the Republic 
of Armenia awarded him for the best work in Technical Sciences and Information Technologies. In 2020, he 
received an HDR (Habilitation a Diriger les Recherches) degree from the doctoral school of the Institut National 
Polytechnique de Toulouse, France. During his career, H. Astsatryan participated in many international 
conferences and workshops in Europe and the USA and many international Projects and Grants. He is an author 
of more than 80 papers in international scientific journals and conferences. He has more than twenty years of 
experience in High performance, cloud and scientific computing, Big Data, and data analytics.  

Participation in international research projects 
1. Reforming ARMDOCT - Doctoral Education in Armenia in line with Needs of Academia, Industry

and Current EU Practices, EC Erasmus+ KA2 Nr. 609850-EPP-1-2019-1-AM-EPPKA2-CBHE-SP,
2020-2023, (role: participant).

2. Machine Learning to tackle weather and air pollution using DAtasets of satellite imagery and digiTAl
models, Philip Morris Armenia, 2019-2020, (role: coordinator).

3. NI4OS-Europe: National Initiatives for Open Science in Europe, EC Horizon 2020 Nr. 857645, 2019
– 2021, (role: participant).

4. PROfiling the atmospheric Boundary layer at European scale (PROBE), EC Cost action (European
Cooperation in Science and Technology) CA18235, 2019 – 2021, (role: participant).

5. Understanding and modeling compound climate and weather events (DAMOCLES), EC Cost action
(European Cooperation in Science and Technology) CA17109, 2018 – 2022, (role: participant).

6. ADC4SD: Supporting Armenia in Building the Armenian Data Cube, Swiss State Secretariat for
Education, Research and Innovation, 2018 – 2020, (role: participant).

7. Promoting Academia-Industry Alliances for R&D Through Collaborative and Open Innovation
Platform (ALL4R&D), EC Erasmus+ KA2 Nr. 598719-EPP-1-2018-1-MK-EPPKA2-CBHE-JP, 2018
– 2021, (role: participant).

Lead researcher signature: 
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RESEARCHER 

First and last name Aram Kocharyan 

Academic/Professional 
rank 

Dr. 

Affiliation Institute for Informatics and Automation Problems of the 
National Academy of Sciences of the Republic Armenia 

Lead Researcher CV 

Dr. Aram Knyazyan (m) is a member of the “Scientific Computing” Centre at IIAP. He got a joint PhD degree 
both in Armenia and in France. The research interests of A. Kocharyan include resource management, energy 
consumption minimisation, and cloud computing. His professional interests include service tradeoff and OS 
resource management and provisioning. 

Participation in international research projects 
1. NI4OS-Europe: National Initiatives for Open Science in Europe, EC Horizon 2020 Nr. 857645, 2019

– 2021, (role: participant).

Lead researcher signature: 

RESEARCHER – PhD student 

First and last name Kristina Khudaverdyan 

Academic/Professional 
rank 

PhD student 

Affiliation Assistant Professor at National Polytechnic University 
of Armenia 

Researchers’ CV 

Mrs. Kristina Khudaverdyan is Assistant Professor and part time PhD student at National Polytechnic 
University of Armenia.  

Participation in international research projects 
1. Change in Classroom: Promoting Innovative Teaching & Learning to Enhance Student Learning

Experience in Eastern Partnership Countries (PRINTeL), Erasmus+ KA Nr. 585760-EPP-1- 2017-1-
AMEPPKA2-CBHE-JP, 2017-2020, (role: participant) 

2. Promoting Academia-Industry Alliances for R&D Through Collaborative and Open Innovation
Platform (ALL4R&D), Erasmus+ KA2 Nr. 598719-EPP-1-2018-1-MK-EPPKA2-CBHE-JP, 2018- 
2021, (role: participant) 

3. Transforming Architectural and Civil Engineering Education towards a Sustainable Model
(TACEESM), Erasmus+ KA Nr. 2618883-EPP-1-2020-1-IT-EPPKA2-CBHE-JP, 2020-2023, (role: 
participant) 

Researcher signature: 
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9. Project budget and cost

Costs Amount (Euro) Comment 
Personnel costs 7200 1PM 
Travel 600 Participation and presentation in one conference 
Equipment 0 Using the facilities operated by NPUA/IIAP 

Cooperative R&D Unit, Open-Source Software Lab 
Dissemination costs 200 Booklets, brochures 
Total 8000 
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